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Abstract

This approach to dynamic scene analysis is a qualitative one. It
computes relative depths using very general rules. The depths calcu-
lated are qualitative in the sense that the only information obtained is
which object is in front of which others. The motion is qualitative in

the sense that the only required motion data is whether objects are |
moving toward or away from the camera. Reasoniag, which takes :
into account the temporal character of the data and the scene, s’

qualitative. This approach to dynamic scene analysis can tolerate
imprecise data because in dynamic scenes the data are redundant.

Keyworda: gyalitative vision, dynamic scene analysis, relative sur>

face ae;_)ﬁ':;.w

1 Motivations for qualitative vision

For many -easons cgmputer vision has proven a difficult task, far
more difficult than ¥as originally suspected. The complexity of the
real world is sampléd spatiaily and *emporally and projected onto
s time ordered ence of frames. The desacription of objects, re-
‘ationships and evyents among those objects is a signal to symboi
sransformation which requires the wop-down use of knowledge (i.e.
an interface to a/memory). Because the projection process “loses” a
dimension, integpretation must bc able to tolerate ambiguous date.
Noise compouygds the ambiguity of the frame sequence. Roberts’
work in this feld, 22!, acc te for noise using
several heuristics for fine detection and a top-down model-fitting ap-
proach. An approach to solving this problem of model-fitting under
aoise is given by Brocks 8i. In this work, he has the problem of
unknown ‘ransforms between model and image; to soive this proo-
lem he uses a constraint manipulation package o limit the matches
Setween image and model and hypothesize other matches consistent
with the constraints. The transforms are intiaily under-specified.
then increamngly constrained.

Two spproaches have proven to be particularly restrictive. The
3rst 18 the locus on singie (rame anaiysis. Eariy researchers [eit thas
it was necessary to first process one frame, and only then examine
the subsequent Fame. This is a stenle approech because it avoids
all temporaily changing scenes (i.e., things like pictures and maps),
including most scenes of interest. The second approach which has dis-
appointed 3 the careful computation of numencal features n a data
driven maaner. Examples are 3-D positions of {eature points ob-
tained via structure-{rom-motion or of surface normals from optical
Jow, shape {rom shading, or texture, motion parameters: v,,v,,v,,
and optimuation of objective functions (for citations descrbing these
various approaches see: 1!, 20}, '24l, 27, '32i). Most rely on an -
verse transformation, from two dimensions to three, and that, com-
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bined with the noise inherent in sensor and the sampling and digitis-
ing processes, meana that algorithme providing quantitative solution
will be inberently very sensitive to noise.

Along with the growing interest in dynamic scenes, the realiza-
tion that mproving accuracy in a highly restricted set of features
does not particularly help the interpretation process some vision re-
searchers 25| are being drawn to the qualitative approaches being
used for common sense reasoning, naive physics and circuit analy-
sis ‘6], {12l. The reasons for this are that qualitative approaches
show that it is possible to obtain useful results when solving prob-
lemsa with uncertain, approximate or only signs of parameters. The
representations of the problem domains are an attempt to capture
the fundamental nature of the system, while avoiding the complexity
of dynamic equations. Currently, much of the work done in quali-
tative physics invelves determining appropriate states and symbols
and an understanding of the nature of state charge. Another im-
portant comp t is a simulation pr , which allows one to get
8 grasp on causality. The qualitative approaches thus far attempted
in Al have generally included things like signs of derivatives (9] (16
or transitions {10]. Computer vision is also a testbed where consid-
erable inteiligence s required. Further, the data :n computer vision
are always ooisy, frequently redundant, and often misleading.

Another approach for handling the noise for tottom-up processes,
having support from biclogical vision systems, is to use a variety of
window mzes or a collection of band-passed images. Larger sized
operators average over a greater area, and thus ior reasonably well
behaved 20mwe, the noise has less effect on the result. Unfortunately,
the larger the window, the more likely it is computing & magle result
over two or more different pixel source populations. Some researchers
have proposed using a set of different window sizes, large ones for
large scale and perhaps low contrast changes and smaller ones for
more local changes 17}, the scale space is a conunuous version of
this (32]. It is not clear how to combine information among these
many channels, partly because the channels are betng used for two
Sifferent lings: detecting [or measuring) at LTerent scales, ana
using larger channels to reduce nowe effects at the lower channels.

Event detection in its most general sense locates the interface
between qualitatively different sources of pixel population. The idea
of event detection is =0t 1o smoOth over noise, and thus over differ-
ent pixel populations by using a magwcally chosea window size, but
instead to detect where the pixel population changes and avosd any
integratioa across that boundary. Umng this paradigm are (5], (11},
and (13} aiso 24|, using a finite element approach. can racture the
surface at appropniate places.

This nowe issue has especiaily frustrated dynamic scene researchers
because it has been shown mathemaucally that ail 3-D informatica




(o a scale factor) is available in the optical flow field. Attempts
to get the information have been [ruitless because even the best ob-
tainabie flow felds are too badly corrupted. Thompeon, et al., {26]
take the approach that if precise values are oot computable, then
compute the qualitative information: which segment is the occluder
and which is the occluded. Jain {14] has also obtained this infor-
mation for different sorts of scenes. Both use only a crude, though
computable, appraximatiou to optical low. The first uses an ap-
proximatioa to the flow field called a disparity field requiring good
feature detection and correspondence algorithms. The second uses a
more qualitative approximation, computing the time histoey of pixel
changes. But in any case it is clear that useful results are possible,
zven from the noisy data available, using and computing qualitative
attributes rather than precise, bnttle ones.

2 Using models in computer vision

There are a number of reasons for building or using a model in com-
puter vision.

1. A model provides a simplified representation. For example, the
motion of a point may be specified with initial state and state
transition equations, thus it is not necessary to store, for each
point n time, the position of a point.

0

. At some, perhape iow, levei, the data can be said to be under-
stood when there 13 a model which fits them. For example. at
a very low level whea the data fit, e.g., a straight line, the line
8 a model for the data, and as a line 1s understood, so 8 the
underlying phenomenon giving rise to the data. This 18 like
number 1 above. At a higher level, for the model which is a
line y = mz «b, one can say e g., m is velocity and § 1s starting
position. At the highest level, if the model is a frame with slots,
then the general practice is to use & priory default values for
slots which are not filled from the data. Thus, a limited data
set which cause a particular {rame to be instantiat~d. :nggers
a top-down use of the model in which more is understood than
can be Jerived .n an immediate sense irom the data.

=

If the iaia can be said to §t some model, then, hecause in
general, each data point need not be kept around, the intet-
pretation processes can be made more tolerant (0 nowse. In
the representation. data can be ailowed tw lie within a range of
values, as signal -~ noise, where he noise has some understood
or assumed statistical properties.

4 Missing or amdiguous data can be handled by assumung :he
data exist according to the model, but are not measurabdle for
some reasan. This property of modeis s Leavily reued upon by
COMPUtEr visicn fesearciers Decause ucciusion is rampant.

3. When a modei .3 avaiiable, :t can play the role of a xind of
short term memory where the :ntegration of 'iata, sspeciaily
of errorful -iata :an de incorporated. Thus property was nsed
n o
primitive fasfhicn.

:n their very eariy work 5o iynamic wene anaiysis, :n a

There are a sumecer >f representation techniques {or modeis. Per-
haps the most popuiar s 1o use frames having siots 18 . A labeiled
“rame wil tave 3 wumoer of labeiled tiots which ran te Slled with
aumbers. attributes ;1 &. symboisi, variabies o iinks to ctler {rames
The procedures which manipulate these slots, for exampie how the
siot with label vefoity reiates 10 dynamucal equations which can pre-
dict future positions e also part of :he modeiling process. The
dynamicai equations are modelling the motion. These suets of cal-
zuiations are a0t as easily represented in ‘rames, since this sort of
tnowledge s more naturally given as procedures. [ncterpretation in-
volves :nstantiating ‘he model from among a set of compettors that
best match the data An event indicates where modeis, or perhaps
oniy parameters of the modeis, change. Conddence i3 a number ex.
pressing some wind of probabuility that the model 8 correct or that
the data measurement s correct, when that :nformation s svaidabie
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3 Purpose and use of chronologies

The very earliest works in dynamic scene analysis required the rep-
resentatioa of velocities and positions over time. It s not enough to
give a simple initial state, because most mations are not describable
with simple dynamic equations (consider hierarchical or non-rigid
motions), and because they do not incorporate changes in motion
descriptions, and because other interesting temporal characteristics
are not included in a natural fashion. The early works did not keep
chronologies. Instead, in ‘2| for example, they kept a model of the
scene for oue time instant only, and used that to predict the mode! for
the next frame. This implicitly incorporates the initial state descrip-
tion. Robot planning frequently requires the description of several
actions over an extended period of time. These are generally inspired
from the approach of describing the state of the world and robot at
each time instant (for an advanced use of this see 7).

Tsotsos 28! made extensive use of chronologies which were essen-
tially time-ordered positions of points to choose among hypotheses
for high level motion descriptions (e.g. expand. sway). His system
chose the best hypothesis by examining the time-course of confi-
dences of the possible schemas. This example exemplifies & major
use of chronologies: to disambiguate local motions into more global,
longer term motion descriptions. Other uses are to be able to predict
future positions and circumstances, to identify interesting motions,
and to localize events in the motions. In addition 0 obtaining long
term motion descriptions, a history of events or of motions, or of
relationships between object parts, is useful on its own, or for deriv-
ing cther, even higher level descriptions. That is, -ne may be able
to describe oscillatory motion as such, rather “ban as a repeating
sequence of position and velocity.

Chronologies are not really models, however, because they nei-
ther provide a simplified representation for the data, nor do they
provide understanding. They provide a description. Chronclogies
also provide a representation in which noise tolerance, occlusion and
integration of cata in a temporal fashion can be surported, especially
under the control of temporaily dependent operation.

4 Local Temporal Inferencing

4.1 Introduction

When values can be tied to a number !ine, they are quantitaiive.
Permuiting bounds on values, that i3, restricting :hem :0 an inter-
val on the aumber iine, one can sull do numencai operations oa
them 2. Naive physics researchers use the quaitative {symbolic)
descriptors: increasing or decreasing. These vaiues are obtained b
considering the sign of derivatives, also an interval. If the sign
positive, the vaniable values are increasing. We aiso use the intervals
{-20,07), i07.97), {0", ~oc) as qualitative values. Another sort of
jualitative value 1s a relative statement. For exampie x is faster thana
y. or 213 closer than b. This sort uf reiation constrans the value of
x with respect t0 y (and vice versa), but 1oes nok tie the value to
the number ine. Hasse diagrams are a graphical representation de
scribing such relative statements when the reiation srovides a partiai
ordering. The quaiitative examnie involving part:ai order is different
from the notions of state and of symbui. It s a :omparison. The
~rdering juaiitative example :s also more robust o noise - though
a0t Decause the error towrance s greater

" There are other qualitative relations between attnbutes which
are intervai in thewr nature. 1.e, which have beg:a and end points.
Vilain 30 and Allen 4, have developed an :aterval-based tempora:
reasoning and labeiling system. Their works,. and hose of others, are
applicabie to domains like story understanding, where there tend 0
be fixed endpoints o the tempcral intervais. Vere 22 has developed
a system which wiil generate parailel plans for achieving goals within
tiMme constrants.



4.2 Constraints on domain and general description

For the work reported here we wish to describe the relations among
objects, without recourse to object or scene models, over extended
frame sequences. In particular, we wirh the program to provide the
relative depths amoag surfaces, when computable, and histories of
surface to surface relations.

The data for this work are time-ordered lists of occluder-occluded

rubw. The derivations for the future hold under the assumption that
thete is no change in the direction of depth velocity {magnitude is
unimportant). However, we prefer not to have to deal with such an
unstructured, open-ended future. Since the data are arriving at this
system at each time step, we make the inferences iato the future
for oone time step only. Thus, at time fo, we have a set of depth

lats ¥#{tg). From these relations we use the velocity rules to

pairs and directions of motion in depth: of surfaces (toward or away
from camera). {14} snd [26] have shown methods whereby occluder-
occluded relations may be obtained. No further data are required.

Suppose that all objects are stationary (ie., as in static scene
analysis). The data provided are triples of the sort: A occludes B. In
terms of depth, z, this means, for surfaces with changes in depth that
are negligible with respect to inter-surface depths, that 2(A4) < z(B).
We use the notation A < B. Occlusion data thus places a partial
otdering on the depths of surfaces; and for static scenes, tranmtivity
suffices to provide all computable depth constraints between surface
patches. This partial ordering does not change over time. Thus, for
example, given the data set: A < B; B < C; B < D, transitivity
gives us that: A < C, A < D, and that there 3 no ordenng in
depth between C and D. Inconsistencies in data and in deductions
are trivially detected, though aot trivially resoived.

When objects are permitted to move 1n a plane parallel to the
image plane the rule for combining depth constraints is agun tran-
aiuvity. If there is no change 1n depths of objects then the relative
depths will aot change.

If objects are ailowed to move wn depth, then the depth order
obtained by a local occlusion analysis can 8o icager be used as a
sorting crniterion. Traasitivity dces not hoid :nto the future when
depths change over time. An approach to this problem is to project
depth constraints between two objects into the future, and then use
those derived constraints in transitive relations at the time of inter-
est.

4.3 Velocity rules

There are four physicaily derived ruies which give the projection
intc the future for the -Jepth orderings. Moticn :n depth 3 v. If
Sign(ves.si) < O then motion s foward the obeerver on the temporal
interval (1.2 « M) For Signivic.s) > O moton is ewey from
the observer on the same interval. Sign(v) = ) means there is no
agnificant motion tn depth. The four rules are:

o rulel A¢ © Brand veco i d) = 0and v, 5 (B) =0 =
Arezt < Beecs

o rule?  Ar+ Byand vy oAb - Dand vy, (B) =0 =
Arezr < Beo

o ruiel Ar o Brand vego i d) D and vyl g (B) 20 =>
‘l-;l « 3('.’,!

o ruied A« Bgand vop. i A) <D ane v, (B) >0 =>
Aeze s Beess

These ruies are ail expressed :n

Ao Be and veosnA)l - =D and vyl 0 3)
Aegest 7 Beres

They are seferred to 2 ‘ater 'ext A8 veiocuy ~wes For other motions
of A ana 3. that s, jor 4¢ - 34 wd; ~ 0 o wlB) <0
there 3 no relative depth :nformation between 4 and 5 at time
t - . !nconsistencies are jetectable o this scheme when coaflicung
relations are derived icycies are Jetecteu).

) =

where

4.4 Temporally local inferencing on qualitative rela-

tions

The data are occluder-xcciudee pairs, and the direction of motioa
in lepth itoward or away from obeerver). From these data, one
can derive «nfront (and betind) relations for the ;resent tune umng
transiivity of depth ordering, and for the future usming the veiocity

And
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derive, for the next time ¢y, & set of relations ¥°(t;). This set of
relations, ignoring tirse and labels, will be a subset of the relations
at tg. Recall velocity rules are of the sort A < B at o plus some
constraints oa velocity of A and B > A < B at t;. There s no
point in applying the transitivity rule at this point, it will not add
any new arcs. Incorporating the data at time f; will add some new
relations. This will give rise to the set of relations ¥=°(t;). Now one
applies transitivity at this point to obtain the set ¥(f)), and the set
of relations is ready to project into the future one time step again.
See figure 1 for a layout of the order of operations oa the relations.

Thus, this system incrementaily incorporates the data as it be-
comes available. It makes no attempt to predict further into the
future than to the next time step. A time step is defined as when
the next datum is available. It has no memory beyond one time step.
It is locel, temporally speaking. More glooal temporal knowledge is
kept elsewhere in the system - specifically, in the object histories.

In the system there may be several relations between a given pair
of segments. That is, each reiation has two segments aad a label. For
the segment pair, A and B, we may have, e.g.

order label
A< B rulel
A < B data

As long as the data are consistent and correct. these inferences
will iteratively build a consistent partial order on the segments which
is as complete as is possible for these rules at the current time. What
hYappens when a datum is incorrect? I[n that case we will have an
inconsistent set of relations. This inconsistency s signaled by a cycle
n the graph. For example, suppose we have the relation: A~ < 3 :
rulel for the graph in ¥°(t). We then read the datum 8 < A. The
graph thea contans the cycie A = B.

Because we have labeis on relations, we know what gave rise to the
inconsistency. For the above exampie we know that. >ecause there
i3 a cycle, the datum B < A is wrong, or the ruiel applications
was w.ong cr both. Conceivably, we could trace the cause of the
inconsistency back further into the past. For the above exampie, if
the rulel application a2 time ¢ — | was wrong then either the v(.A) was
wrong, v(3) was wrong, the reiation A < B at time t - | was wrong,
ot any sutset of these three was wrong. For this one :nconsistency
involving only two objects and two relations we have aready fingered
as posmble cuiprits four attnbutes or relatioas going Sack oaly one
tume step. Indeed. f we kept only a siightly more compiete audit trail
she reiation 4 < 3 at tume ¢t ~ | could be further tracied Jown. This
gives rise ‘0 even more posmibilities of the source of inconsistency
even more remotely wn time.

We are not doing this for a aumber of reasons. The most :m-
portant of these 3 than 1n a dynamic scene understanding system,
one does not have the resources to spend a lot of ume and energy
resolving ;ast confict: data are continuaily arnving, aad it is better
w0 have tbe current (and future) .nterpretations de correct than those
of the past. Secondly, many culprits are fingered {or each inconse-
tency. Thus 18 a lot of overnead and cancot be resoived or reduced
Gein the mformatca currently avadlable. For a thiurd reason, resolu-
t1on 13 possible oniy in the future when more data s avulable - there
3 no resolution possible in the past {where the inconsstency arose).
Fourth is that we rely on the fact that there are a ot of data. Even
though some are wrong, most will be right; we do not want to devote
much effort to incoamstency resolution because we may expect that
future data wiil set things nght. There is one ynportast consequence
of this {or the impiementation: we do nol ieep an estensive audit
trml. We iabel each arc with oaly the rule that most recently denved
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So we do pot make any attempt to undc any bad eflects from
bad datain the past. The present data are a different matter.
We do, however, want the correct data to eventually outweigh any
incorrect inferences. We have a number of options ca how to go
about doing this. Essentially there are two questions:
1. how to propagate, to the next time step a relation which has a
coatradiction

2. how to incorporate a contradicting pair of relations into object
histors

We deal with this difficulty by taking the position that one must
trust the current data st the current time. Any inferences from
that data, especially into the future msy be suspect, but the data
themselves are assumed to be correct for the time sow. We could
take the position that any relation which contradicts dats will be
deleted immediately, and is not allowed to propagate into the future.
But we still have the problem of contradictory relations which do not
have date on either of the labels. Por example, see figure 2 in which
we show the derivation of an inconsistency.

We are drawn to the use «f a certainty factor for each relation
in order to accomodate .he possibility of occ ily invalid data
The certainty cf dats relations will be highest. As inferences are de-
rived, the certainty factor of those relations will decrease. There are
» number of technical difficuities involved in dealing with certainty
factors and getting them to be rigorously correct. We avoid these
by relying on the fact of large amounts of mostly right data. To ng-
orously derive a calculus of certainty factors, it is necessary to have
a sufficiently deep understanding of the nature of the domain, espe-
cially of the nature of the data, noise, and sometimes even a priens
probability values of the data, s weil a0 ptions of indep
dence, or and knowledge of correlations. In the spirit of qualitative
processing, we wish to avoid making such restrictive assumptions
until necessary. In this system we are attempting a qualitative sp-
oroach in which we know there is nowe, though we don't know 1ts
precise precise properties. Because of the fortanate choice of using
dynamic scenes as data, however, we can use the fact that the data
will be mostly redundant. Thus even though rigorous derivations for
certainties have been done 23! and may be applicable we are not
currentiy investigating that direction. We just want certanty fac-
tors to decrease with time and with tranmtive “distance® from dela
There are a number of choices on how to combine certainty factors
when making inferences. We are currently experimenting with ths.
The problem of which of two contradictory reiations to propagate
we deal with heunsticaily: reistions which are contradictory are not
permitted to activate the transitive rule. All other relations may
activate both transitive and velocity rules. We put this restncuoa
nn tranmtive-denved contradictory rules for computational reasons
saly. Many reiations sre denived using transmtivity, and when cae
of the links » suspect, all links denived from it are suspect. Infer-
ences whose certainties are decreasing Lo zero are deleted aRer a fixed
aumber of time steps.

5 Chronologies

5.1 Representational issue—indexing

in buiding a chronology of depth-ordered relations among surface
patches for use, exther as a descriptive device, or as an intermediate
data structure for further processing, there are two ways of indexing.
The frat 3 to organise the relations tempocally. In dynamic scene
analyss, unlike story understanding, the data are arriving in & time-
srdered fashion, e.g. in ‘rame ¢, the s some set #(1}) of reiations, st
frame s + | some other vet ¥(s - 1). The chronology of relations has
the same appearance as the data with the addition of denved rela-
tions. In this case it is easy to see what is happeaing at a particular
time instant, because time 8 the index into list of relations, e g.

64

time velations

(< AB) (< AD)

(< AB)(< AD)

(< AB)(< AD)

(< AB) (< BC)(< AC)

- N -

We see in cne indexing step which relations exist at t=3. Given
the way the velocity rules are formulated, it is alo casier to make
predictions imto the pext time step. For example, if the motions in
depth of A, B,C are negligible, thea at time 4 we can make the pre-
diction that st tithe S, the following relztions will bold: {< A B),(<
BC),(< AC).

The second indexirz ~thod is to organize by relation. That is,

If relations persist, or are repetitious, then it saves on space to
index by surfaces. This representation trades off relationship storage”
for temporal storage space advantageously when relations are loag-
lived or recur frequently. To determine at a particular time instant
which relations are active requires inspection of s lot of data. The
time course of relations is eamer 10 access. Event marking makes de-
riving an interval-based description easy. And this method of index-
ing s better for dealing with ncise removal, occlusion and integration
over time.

5.2 History and world model of Jdepths

Despite the {act that dynamic vision has a lot of data available,
thanks to its rempent redsndancy 31}, it is both more efficient as
well as satisfying to keep histories of relations which are indexed by
surface. The {act remains, however, that in order to make derivations
{or predictions) using the velocity rules and to be al'e to make »
computatiocally fast statement about the relative depths at time
now, we keep the current list of relations, though redundant with
histories. That s, lor now we have s “temporally indexed” set of
relations. For sow as well as ail the past we have object-indexed
relations. This means that if relative depths for any past time »
demred, though the informatioa is calculable (indeed, was calculated,
then discarded), from the histones, it is not immediate. Rather, the
system will have to step through the histories, iaily re-creating
the world for the desired time. There are certain mnularities with
envisionmg 9l. For now we can get an ordered relative depth map
by doing s straight-forward topological sort {151,

8 Experiments

The local temporal inferencing system was implemesnted as described
in & previous section. We made a few adjustments, o¢ pruning pur-
pose, to the inferencing procedure as follows.

o Relations which were contradictory, eg. A < 3 and B < A,
were oot permutied to participate in any lranmuvity inferences.
This s becauss the coly resuit from applying transitivity on
contradictory relations i3 masy more costradictory relations.
Countradictory relations are allowed to propagate mto the future
with the velocity rules.

Only relations derived from transitivity which had a larger or
equal confidence factors than other relations aiready present
(between the same nodes) were posted. For exampie, suppose
we bave the relation 4 < B with coafidence 70 present, then
we denive A < B with confidence .35 from tranmtivity. That
new relation s ignored.




e Data relaticns are takea with confidence 1.0 (indicated as ¢f =
1.0), and other relations already present betweea the same
nodes a8 the data relation were deleted. That is, if we have
A < B becauss of a rule! application with ¢f = 9, then we
read the datim A < B, the previous relef edge is deleted, only
the data edge remains.

We did not perform theorstically rigorous derivations of coaf-
dencs factors. This is because the exact rules for combining confi-
dencss B not important in our scheme. Confidencss propagated with
velocity rules have a “time-decay” built in. That is, if A < B(to);cf :
2, with appropriate velocities, then we derive A < B(t,);ef : 2,
where 2’ < 2. Confidence factors are combined for transitivity rules
by taking the mun of all the relations involved, then applying a decay
factor (called a “spatial decay”) to tbe resulting number.

We present the resuits of an experiment in the series of figures 3
~ 7. The input is echoed in the “input-list® window. The “active-
relations® window contains a list of edges with the label (reason) and
confidence. In figure 3 the data is only the three v motions of the
objects A, B, and C. In figure 7, the data are A < C and B < A, the
transitive closure is performed which derives B < C. Data relations
have confidences of 1.0. Transitive relations, i.e., tc are decayed. In
figure 7, the same three relations remain, because the velocity rule
tulel infer them. The confidences have all decreased. Notice the

fidence for the relation 5 < C, the relation originally derived
through transitivity, is less than that of the other two relations orig-
inally derived ‘rom data. In figure 7, we have in the data D < 4;
note the new relation has ccafidence 1.0. In addition, we have de-
rived through transitivity the new relation D < C. In this figure
notice that B < C actually has two edges. One s a wocity rule
edge with confidence 0.6, derived from previous B < C edge. The
other is a transtivity edge derived from the edges you see present,
B < Aicf : 08 and A < C;cf : 0.8. Tim did not happen in fig-
ure 7 at time 8 because of the nature of the spatial and temporal
decay factors. For this experiment, the spatial decay is larger than
the temporal decay. Figure 7 has the contradictory relation A < D
just read in. In Sgure 7, only the maximum relation of the coatrs-
dictory relations is printed out. The oid A < D because of rule! s
act drawn, though it will be propagated into the future. There are
other ways of choosing a set of relations without cycles. For example
one may add up the confidences on A < B reiations andoa A > B
relations, then choose the maximum of the two.

7 Conclusion, consequences and next steps

In this paper we have descnibed s dynamic scene analyms system
which uses qualitative informatioa, available with current computer
vison abilities, to calculate relative depths between surfaces. The
qualitative information required are motion toward or away from
observer and occluder-occiudee ordering. The system derives further
relations rom the data. Errors and inconsistencies are tolerated by
requiring confidence factors to decay on each inference step. We have
also descnibed in this paper our appeoach 1o representing histories of
such qualitative vaiues.

This research has opened a number of questions. Among the
more important is the problem of using such qualitative calculations
aa control for other computer vision pr . or ss intial estimations
for those iterative algonthms requiring them. We see this quaita-
tive assesament as capable <f providiag s focus of attention when
resources are limited and for making real-time dynamic scene analy-
«3 possible. The integration of qualitative procedures with numencal
oues is an interesting problem.
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